aboutsummaryrefslogtreecommitdiff
path: root/core/cerberus.c
blob: 9f12f7d4163032464b0c4e74c73016e4fd355b9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#include "cerberus.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/err.h>
// uuid/uuid.h not required; implement UUID v4 using RAND_bytes

// Vault structure
typedef struct {
    uint8_t salt[SALT_LEN];
    uint8_t key[KEY_LEN];
    bool key_initialized;
    cerb_entry_t *entries;
    size_t num_entries;
    size_t capacity;
} cerb_vault_internal_t;

// Initialize crypto
cerb_error_t cerb_crypto_init(void) {
    OpenSSL_add_all_algorithms();
    ERR_load_crypto_strings();
    return RAND_poll() ? CERB_OK : CERB_CRYPTO_ERROR;
}

// Cleanup crypto
void cerb_crypto_cleanup(void) {
    EVP_cleanup();
    ERR_free_strings();
}

// Create new vault
cerb_error_t cerb_vault_create(const char *master_password, cerb_vault_t **vault) {
    if (!master_password || !vault) return CERB_INVALID_ARG;
    
    cerb_vault_internal_t *v = calloc(1, sizeof(cerb_vault_internal_t));
    if (!v) return CERB_MEMORY_ERROR;
    
    if (RAND_bytes(v->salt, SALT_LEN) != 1) {
        free(v);
        return CERB_CRYPTO_ERROR;
    }
    
    // Derive key from password and salt
    if (!PKCS5_PBKDF2_HMAC(master_password, (int)strlen(master_password),
                           v->salt, SALT_LEN, PBKDF2_ITERATIONS,
                           EVP_sha256(), KEY_LEN, v->key)) {
        free(v);
        return CERB_CRYPTO_ERROR;
    }
    v->key_initialized = true;
    
    v->capacity = 32;
    v->entries = calloc(v->capacity, sizeof(cerb_entry_t));
    if (!v->entries) {
        free(v);
        return CERB_MEMORY_ERROR;
    }
    
    *vault = (cerb_vault_t *)v;
    return CERB_OK;
}

// Save vault to file (AES-256-GCM encrypted blob)
cerb_error_t cerb_vault_save(cerb_vault_t *vault, const char *vault_path) {
    if (!vault || !vault_path) return CERB_INVALID_ARG;
    cerb_vault_internal_t *v = (cerb_vault_internal_t *)vault;

    FILE *fp = fopen(vault_path, "wb");
    if (!fp) return CERB_STORAGE_ERROR;

    // Serialize entries: [num_entries][entries...]
    size_t plain_len = sizeof(uint32_t) + v->num_entries * sizeof(cerb_entry_t);
    unsigned char *plaintext = malloc(plain_len);
    if (!plaintext) { fclose(fp); return CERB_MEMORY_ERROR; }

    uint32_t n = (uint32_t)v->num_entries;
    memcpy(plaintext, &n, sizeof(uint32_t));
    if (v->num_entries > 0) {
        memcpy(plaintext + sizeof(uint32_t), v->entries, v->num_entries * sizeof(cerb_entry_t));
    }

    // Prepare AES-GCM
    unsigned char iv[IV_LEN];
    if (RAND_bytes(iv, IV_LEN) != 1) { free(plaintext); fclose(fp); return CERB_CRYPTO_ERROR; }
    unsigned char *ciphertext = malloc(plain_len);
    if (!ciphertext) { free(plaintext); fclose(fp); return CERB_MEMORY_ERROR; }
    int len = 0, ciphertext_len = 0;
    unsigned char tag[16];

    EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
    if (!ctx) { free(plaintext); free(ciphertext); fclose(fp); return CERB_CRYPTO_ERROR; }

    if (EVP_EncryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL) != 1) {
        EVP_CIPHER_CTX_free(ctx); free(plaintext); free(ciphertext); fclose(fp); return CERB_CRYPTO_ERROR;
    }
    if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, IV_LEN, NULL) != 1) {
        EVP_CIPHER_CTX_free(ctx); free(plaintext); free(ciphertext); fclose(fp); return CERB_CRYPTO_ERROR;
    }
    if (EVP_EncryptInit_ex(ctx, NULL, NULL, v->key, iv) != 1) {
        EVP_CIPHER_CTX_free(ctx); free(plaintext); free(ciphertext); fclose(fp); return CERB_CRYPTO_ERROR;
    }

    if (EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, (int)plain_len) != 1) {
        EVP_CIPHER_CTX_free(ctx); free(plaintext); free(ciphertext); fclose(fp); return CERB_CRYPTO_ERROR;
    }
    ciphertext_len = len;
    if (EVP_EncryptFinal_ex(ctx, ciphertext + len, &len) != 1) {
        EVP_CIPHER_CTX_free(ctx); free(plaintext); free(ciphertext); fclose(fp); return CERB_CRYPTO_ERROR;
    }
    ciphertext_len += len;
    if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) != 1) {
        EVP_CIPHER_CTX_free(ctx); free(plaintext); free(ciphertext); fclose(fp); return CERB_CRYPTO_ERROR;
    }
    EVP_CIPHER_CTX_free(ctx);

    // Write file: MAGIC, VERSION, SALT, IV, TAG, CIPHERTEXT_LEN, CIPHERTEXT
    const char magic[8] = { 'C','E','R','B','E','R','U','S' };
    uint32_t version = 1;
    uint32_t clen = (uint32_t)ciphertext_len;

    if (fwrite(magic, 1, sizeof(magic), fp) != sizeof(magic) ||
        fwrite(&version, 1, sizeof(version), fp) != sizeof(version) ||
        fwrite(v->salt, 1, SALT_LEN, fp) != SALT_LEN ||
        fwrite(iv, 1, IV_LEN, fp) != IV_LEN ||
        fwrite(tag, 1, sizeof(tag), fp) != sizeof(tag) ||
        fwrite(&clen, 1, sizeof(clen), fp) != sizeof(clen) ||
        fwrite(ciphertext, 1, ciphertext_len, fp) != (size_t)ciphertext_len) {
        free(plaintext); free(ciphertext); fclose(fp); return CERB_STORAGE_ERROR;
    }

    free(plaintext);
    free(ciphertext);
    fclose(fp);
    return CERB_OK;
}

// Open vault from file
cerb_error_t cerb_vault_open(const char *master_password, const char *vault_path, cerb_vault_t **vault) {
    if (!master_password || !vault_path || !vault) return CERB_INVALID_ARG;
    FILE *fp = fopen(vault_path, "rb");
    if (!fp) return CERB_STORAGE_ERROR;

    const char expected_magic[8] = { 'C','E','R','B','E','R','U','S' };
    char magic[8];
    uint32_t version = 0;
    unsigned char salt[SALT_LEN];
    unsigned char iv[IV_LEN];
    unsigned char tag[16];
    uint32_t clen = 0;

    if (fread(magic, 1, sizeof(magic), fp) != sizeof(magic) ||
        memcmp(magic, expected_magic, sizeof(magic)) != 0 ||
        fread(&version, 1, sizeof(version), fp) != sizeof(version) ||
        fread(salt, 1, SALT_LEN, fp) != SALT_LEN ||
        fread(iv, 1, IV_LEN, fp) != IV_LEN ||
        fread(tag, 1, sizeof(tag), fp) != sizeof(tag) ||
        fread(&clen, 1, sizeof(clen), fp) != sizeof(clen)) {
        fclose(fp);
        return CERB_STORAGE_ERROR;
    }

    unsigned char *ciphertext = malloc(clen);
    if (!ciphertext) { fclose(fp); return CERB_MEMORY_ERROR; }
    if (fread(ciphertext, 1, clen, fp) != clen) { free(ciphertext); fclose(fp); return CERB_STORAGE_ERROR; }
    fclose(fp);

    // Derive key
    unsigned char key[KEY_LEN];
    if (!PKCS5_PBKDF2_HMAC(master_password, (int)strlen(master_password),
                           salt, SALT_LEN, PBKDF2_ITERATIONS,
                           EVP_sha256(), KEY_LEN, key)) {
        free(ciphertext);
        return CERB_CRYPTO_ERROR;
    }

    // Decrypt
    unsigned char *plaintext = malloc(clen); // ciphertext_len >= plaintext_len
    if (!plaintext) { free(ciphertext); return CERB_MEMORY_ERROR; }
    int len = 0, plain_len = 0;
    cerb_error_t status = CERB_OK;
    EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
    if (!ctx) { free(ciphertext); free(plaintext); return CERB_CRYPTO_ERROR; }
    if (EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL) != 1) status = CERB_CRYPTO_ERROR;
    if (status == CERB_OK && EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, IV_LEN, NULL) != 1) status = CERB_CRYPTO_ERROR;
    if (status == CERB_OK && EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv) != 1) status = CERB_CRYPTO_ERROR;
    if (status == CERB_OK && EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, (int)clen) != 1) status = CERB_CRYPTO_ERROR;
    plain_len = len;
    if (status == CERB_OK && EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) != 1) status = CERB_CRYPTO_ERROR;
    if (status == CERB_OK && EVP_DecryptFinal_ex(ctx, plaintext + len, &len) != 1) status = CERB_CRYPTO_ERROR;
    plain_len += len;
    EVP_CIPHER_CTX_free(ctx);
    if (status != CERB_OK) { free(ciphertext); free(plaintext); return CERB_CRYPTO_ERROR; }

    // Deserialize
    if ((size_t)plain_len < sizeof(uint32_t)) { free(ciphertext); free(plaintext); return CERB_STORAGE_ERROR; }
    uint32_t n = 0; memcpy(&n, plaintext, sizeof(uint32_t));
    size_t expected = sizeof(uint32_t) + (size_t)n * sizeof(cerb_entry_t);
    if ((size_t)plain_len != expected) { free(ciphertext); free(plaintext); return CERB_STORAGE_ERROR; }

    cerb_vault_internal_t *v = calloc(1, sizeof(cerb_vault_internal_t));
    if (!v) { free(ciphertext); free(plaintext); return CERB_MEMORY_ERROR; }
    memcpy(v->salt, salt, SALT_LEN);
    memcpy(v->key, key, KEY_LEN);
    v->key_initialized = true;
    v->capacity = n > 0 ? n : 32;
    v->entries = calloc(v->capacity, sizeof(cerb_entry_t));
    if (!v->entries) { free(v); free(ciphertext); free(plaintext); return CERB_MEMORY_ERROR; }
    v->num_entries = n;
    if (n > 0) {
        memcpy(v->entries, plaintext + sizeof(uint32_t), (size_t)n * sizeof(cerb_entry_t));
    }

    *vault = (cerb_vault_t *)v;
    free(ciphertext);
    free(plaintext);
    return CERB_OK;
}

// Add entry to vault
cerb_error_t cerb_vault_add_entry(cerb_vault_t *vault, const cerb_entry_t *entry) {
    if (!vault || !entry) return CERB_INVALID_ARG;
    
    cerb_vault_internal_t *v = (cerb_vault_internal_t *)vault;
    
    // Check for duplicates
    for (size_t i = 0; i < v->num_entries; i++) {
        if (strcmp(v->entries[i].id, entry->id) == 0) {
            return CERB_DUPLICATE;
        }
    }
    
    // Resize if needed
    if (v->num_entries >= v->capacity) {
        size_t new_capacity = v->capacity * 2;
        cerb_entry_t *new_entries = realloc(v->entries, new_capacity * sizeof(cerb_entry_t));
        if (!new_entries) return CERB_MEMORY_ERROR;
        v->entries = new_entries;
        v->capacity = new_capacity;
    }
    
    // Add entry
    v->entries[v->num_entries++] = *entry;
    return CERB_OK;
}

// Update existing entry
cerb_error_t cerb_vault_update_entry(cerb_vault_t *vault, const cerb_entry_t *entry) {
    if (!vault || !entry) return CERB_INVALID_ARG;

    cerb_vault_internal_t *v = (cerb_vault_internal_t *)vault;

    for (size_t i = 0; i < v->num_entries; i++) {
        if (strcmp(v->entries[i].id, entry->id) == 0) {
            v->entries[i] = *entry;
            return CERB_OK;
        }
    }

    return CERB_NOT_FOUND;
}

// Delete entry by ID
cerb_error_t cerb_vault_delete_entry(cerb_vault_t *vault, const char *entry_id) {
    if (!vault || !entry_id) return CERB_INVALID_ARG;

    cerb_vault_internal_t *v = (cerb_vault_internal_t *)vault;

    for (size_t i = 0; i < v->num_entries; i++) {
        if (strcmp(v->entries[i].id, entry_id) == 0) {
            // Move last entry into this slot to keep array compact
            if (i != v->num_entries - 1) {
                v->entries[i] = v->entries[v->num_entries - 1];
            }
            memset(&v->entries[v->num_entries - 1], 0, sizeof(cerb_entry_t));
            v->num_entries--;
            return CERB_OK;
        }
    }

    return CERB_NOT_FOUND;
}

// Get entry by ID
cerb_error_t cerb_vault_get_entry(cerb_vault_t *vault, const char *entry_id, cerb_entry_t *entry) {
    if (!vault || !entry_id || !entry) return CERB_INVALID_ARG;

    cerb_vault_internal_t *v = (cerb_vault_internal_t *)vault;

    for (size_t i = 0; i < v->num_entries; i++) {
        if (strcmp(v->entries[i].id, entry_id) == 0) {
            *entry = v->entries[i];
            return CERB_OK;
        }
    }

    return CERB_NOT_FOUND;
}

// Get all entries (returns a newly allocated array the caller must free)
cerb_error_t cerb_vault_get_entries(cerb_vault_t *vault, cerb_entry_t **entries, size_t *count) {
    if (!vault || !entries || !count) return CERB_INVALID_ARG;

    cerb_vault_internal_t *v = (cerb_vault_internal_t *)vault;

    if (v->num_entries == 0) {
        *entries = NULL;
        *count = 0;
        return CERB_OK;
    }

    cerb_entry_t *out = calloc(v->num_entries, sizeof(cerb_entry_t));
    if (!out) return CERB_MEMORY_ERROR;

    memcpy(out, v->entries, v->num_entries * sizeof(cerb_entry_t));
    *entries = out;
    *count = v->num_entries;
    return CERB_OK;
}

// Basic substring search across website, username, and url
cerb_error_t cerb_vault_search(cerb_vault_t *vault, const char *query, cerb_entry_t **results, size_t *count) {
    if (!vault || !results || !count) return CERB_INVALID_ARG;

    cerb_vault_internal_t *v = (cerb_vault_internal_t *)vault;

    if (!query || *query == '\0') {
        return cerb_vault_get_entries(vault, results, count);
    }

    size_t matched = 0;
    // First pass: count
    for (size_t i = 0; i < v->num_entries; i++) {
        if ((strstr(v->entries[i].website, query) != NULL) ||
            (strstr(v->entries[i].username, query) != NULL) ||
            (strstr(v->entries[i].url, query) != NULL)) {
            matched++;
        }
    }

    if (matched == 0) {
        *results = NULL;
        *count = 0;
        return CERB_OK;
    }

    cerb_entry_t *out = calloc(matched, sizeof(cerb_entry_t));
    if (!out) return CERB_MEMORY_ERROR;

    size_t idx = 0;
    for (size_t i = 0; i < v->num_entries; i++) {
        if ((strstr(v->entries[i].website, query) != NULL) ||
            (strstr(v->entries[i].username, query) != NULL) ||
            (strstr(v->entries[i].url, query) != NULL)) {
            out[idx++] = v->entries[i];
        }
    }

    *results = out;
    *count = matched;
    return CERB_OK;
}

// Generate password
cerb_error_t cerb_generate_password(
    uint32_t length,
    bool use_upper,
    bool use_lower,
    bool use_digits,
    bool use_special,
    char *buffer,
    size_t buffer_size
) {
    if (!buffer || length < 8 || length > MAX_PASSWORD_LEN || buffer_size < length + 1) {
        return CERB_INVALID_ARG;
    }
    
    const char *lower = "abcdefghijklmnopqrstuvwxyz";
    const char *upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
    const char *digits = "0123456789";
    const char *special = "!@#$%^&*()-_=+[]{}|;:,.<>?";
    
    char charset[256] = {0};
    size_t pos = 0;
    
    if (use_lower) { strcpy(charset + pos, lower); pos += strlen(lower); }
    if (use_upper) { strcpy(charset + pos, upper); pos += strlen(upper); }
    if (use_digits) { strcpy(charset + pos, digits); pos += strlen(digits); }
    if (use_special) { strcpy(charset + pos, special); pos += strlen(special); }
    
    if (pos == 0) return CERB_INVALID_ARG;
    
    // Generate random password
    for (size_t i = 0; i < length; i++) {
        unsigned char byte;
        do {
            if (RAND_bytes(&byte, 1) != 1) {
                return CERB_CRYPTO_ERROR;
            }
        } while (byte >= (256 / pos) * pos);
        
        buffer[i] = charset[byte % pos];
    }
    
    buffer[length] = '\0';
    return CERB_OK;
}

// Generate UUID v4 (xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx)
void cerb_generate_uuid(char *uuid) {
    unsigned char bytes[16];
    if (RAND_bytes(bytes, sizeof(bytes)) != 1) {
        // Fallback to zeroed UUID on failure
        memset(uuid, '0', 36);
        uuid[8] = uuid[13] = uuid[18] = uuid[23] = '-';
        uuid[36] = '\0';
        return;
    }
    // Set version (4)
    bytes[6] = (bytes[6] & 0x0F) | 0x40;
    // Set variant (10xx)
    bytes[8] = (bytes[8] & 0x3F) | 0x80;

    static const char *hex = "0123456789abcdef";
    int p = 0;
    for (int i = 0; i < 16; i++) {
        if (i == 4 || i == 6 || i == 8 || i == 10) {
            uuid[p++] = '-';
        }
        uuid[p++] = hex[(bytes[i] >> 4) & 0x0F];
        uuid[p++] = hex[bytes[i] & 0x0F];
    }
    uuid[p] = '\0';
}

// Get current timestamp
time_t cerb_current_timestamp(void) {
    return time(NULL);
}

// Cleanup vault
void cerb_vault_close(cerb_vault_t *vault) {
    if (!vault) return;
    
    cerb_vault_internal_t *v = (cerb_vault_internal_t *)vault;
    
    // Securely wipe sensitive data
    memset(v->key, 0, KEY_LEN);
    memset(v->salt, 0, SALT_LEN);
    
    // Wipe entries
    for (size_t i = 0; i < v->num_entries; i++) {
        memset(&v->entries[i], 0, sizeof(cerb_entry_t));
    }
    
    free(v->entries);
    free(v);
}